Controlled Interaction between Ultracold Lithium and Cesium Atoms in Optical Lattices for Quantum Information Processing

KATHY-ANNE SODERBERG, Department of Physics and The James Franck Institute, The University of Chicago, ARJUN SHARMA, NATHAN GEMELKE, CHENG CHIN — We present progress on a quantum information processing experiment using degenerate gases of bosonic 133Cs and fermionic 6Li , each confined in an independently controlled, overlapping optical lattice. An insulating state of 6Li will prepare an initial state with exactly one atom per lattice site. These atoms serve as quantum bits (qubits). 133Cs atoms are sparsely loaded into a second lattice, and act as messenger bits to carry entanglement between distant qubits. Qubit operations are mediated through magnetic dipole transitions to a 6Li-133Cs molecular state that is formed only when qubit and messenger are overlapped. The 133Cs messenger atom can interact with (multiple and distant) 6Li qubits through translation of the Cs lattice using an electro-optic modulator array, making this implementation scalable. We present progress on the first spectroscopy experiments of the 6Li-133Cs molecular states. These findings will guide the best strategies for implementing qubit operations using messenger atoms.

Kathy-Anne Soderberg
Department of Physics and The James Franck Institute,
The University of Chicago

Date submitted: 14 Dec 2009

Electronic form version 1.4