Abstract Submitted for the MAR10 Meeting of The American Physical Society

Thermal Conductance of Nanoscale VO_x Epitaxial Layers DONG-WOOK OH, IVAN PETROV, DAVID CAHILL — We use time-domain thermoreflectance to measure the thermal conductance of VO_x layers in epitaxial Pt/VO_x/Pt structures. In particular, the metal-insulator-transition of VO₂ at \approx 70°C allows us to systematically explore channels for heat transport between metals and correlatedelectron systems. Pt/VO_x/Pt layers are deposited on a sapphire substrates by reactive DC sputtering with O2 partial pressure varied from 0% to 13%. The thermal conductance has a strong dependence on thickness, 3-50 nm, and oxygen content, pure V to V₂O₅. The thermal conductance of ~10 nm thick layers of V in series with the two Pt/V interfaces is 1 GW/m²-K, comparable to what is expected based on the diffuse-mismatch model for electron transport at interfaces. The conductance of ~10 nm thick layers of VO₂ at room temperatures is remarkably high, 0.5 GW/m²-K, for the series conductance of two metal-dielectric interfaces. At the metal-insulatortransition, the conductance of VO₂ layers increases by only 10%, indicating that electrons in Pt and electrons in metallic VO₂ are not strongly coupled.

David Cahill

Date submitted: 22 Dec 2009

Electronic form version 1.4