Abstract Submitted for the MAR10 Meeting of The American Physical Society

Magnetic correlations in the spin-glassy phase of $\text{Fe}_{1+\delta}(\text{Se},\text{Te})$ NAOYUKI KATAYAMA, SUNGDAE JI, SEUNGHUN LEE, University of Virginia, MASAKI FUJITA, Tohoku University, JINSHENG WEN, ZHIJUN XU, GUANGY-ONG XU, GENDA GU, Brookhaven National Laboratory, TAKU SATO, University of Tokyo, SUNG CHANG, NCNR, KAZUTISHI YAMADA, Tohoku University, JOHN TRANQUADA, Brookhaven National Laboratory, UNIVERSITY OF VIR-GINIA TEAM, TOHOKU UNIVERISITY TEAM, BROOKHAVEN NATIONAL LABORATORY TEAM, ISSP COLLABORATION, NCNR COLLABORATION — Using elastic and inelastic neutron scattering techniques, we investigated magnetic correlations in Fe_{1.02}Se_{0.3}Te_{0.7} and Fe_{1.01}Se_{0.15}Te_{0.85}, both of which exhibit spin-glassy (SG) behaviors at low temperatures. Below the phase transition temperature, T_{SG} , magnetic Bragg peaks appear at incommensurate wavevector (\mathbf{Q}_m) positions with $\mathbf{Q}_m = (0.46, 0, 0.50)$. The peaks are broader than the instrumental resolution, indicating short range magnetic ordering. Above T_{SG} , strong short range magnetic fluctuations exist around $\mathbf{Q}_m = (0.46, 0, 0.50)$. The fluctuations have very weak L-dependence, indicating the good two-dimensionality of the magnetic correlations. The location of \mathbf{Q}_m contrasts with the characteristic wave vector, $(0.5,0.5,\mathbf{L})$, of the magnetic fluctuations observed in the superconducting phase of $Fe_{1+d}(Se, Te)$.

> Naoyuki Katayama University of Virginia

Date submitted: 14 Dec 2009 Electronic form version 1.4