Electronic relaxation at a photoexcited nanostructured Si(111) surface

1 DIMITRI KILIN, DAVID A. MICHA, University of Florida — A combination of time dependent density matrix and ab initio electronic structure methods provide details of the relaxation pathways of photo-induced charge redistribution at nanostructured semiconductor surfaces, giving their changes in energy and space over time. They are applied to a Ag$_3$ cluster on a Si(111) surface, initially photoexcited by a short pulse, and show how surface-localized states added by the Ag cluster enhance electron transfer. Population density distributions in energy and in space, for valence and conduction bands, explore the energy band landscape of a Si slab, with various relaxation pathways ending up in a charge-separated state, with a hole in the Si slab and an electron in the adsorbed Ag cluster. Calculated electronic relaxation times for Si(111):H are of the same order as experimental values for similar semiconductor systems. Results from a reduced density matrix propagation over time, with Hamiltonian and rates parametrized from ab initio electronic structure calculations, give new insight on electronic dynamics at nanostructured surfaces.

1Partly supported by NSF grant CHE-0607913 and by the Dreyfus Foundation