Abstract Submitted for the MAR10 Meeting of The American Physical Society

Ultrathin single crystal diamond nanomechanical resonators 1 M.P. RAY, J.W. BALDWIN, J.E. BUTLER, B.B. PATE, Naval Research Laboratory, T. FEYGELSON, SAIC Inc., M. ZALALUTDINOV, Global Strategies Group Inc. — We report the fabrication and operation of ultrathin (< 100 nm) high-frequency single crystal diamond nanomechanical resonators. Suspended diamond dome structures were created in a microwave hydrogen plasma which undercuts a sacrificial damage layer formed by medium energy (150-180 keV) ion implantation at a high fluence (>1×10¹⁶ ions/cm²). Under high vacuum conditions we measure resonant frequencies between 70 MHz and 550 MHz with quality factors ranging from \sim 750 to over 1000 using an optical technique. Mechanical, thermal and optical properties in combination with chemical inertness and bio-compatibility of single crystal diamond make these high-frequency, low-mass dome resonators suitable for sensing applications.

¹Work supported by the Office of Naval Research.

Matthew Ray Naval Research Laboratory

Date submitted: 20 Nov 2009 Electronic form version 1.4