Carbon defects at the SiC-SiO$_2$ interface and the effects of hydrogen and fluorine1 YINGDI LIU, MICHAEL HALFMOON, SANWU WANG, The University of Tulsa — The channel mobilities in SiC-based metal-oxide-semiconductor field-effect transistors are significantly reduced by the interface defects that produce states in the band gap of the SiC-SiO$_2$ interface. Therefore, it is of great importance to investigate the nature of the interface defects and the ways for passivating such defects. We used first-principles quantum-mechanical calculations to study the interface defects due to excessive carbon atoms. We report the results about the atomic configurations of the defects and the associated electronic structures, as well as the effects of hydrogen and fluorine in passivating such interface defects.

1Supported in part by the Oak Ridge Associated Universities, by the National Center for Supercomputing Applications (TG-DMR080005N), and by the National Center for Computational Sciences at Oak Ridge National Laboratory (MAT011).

Yingdi Liu
The University of Tulsa

Date submitted: 21 Nov 2009

Electronic form version 1.4