Abstract Submitted for the MAR10 Meeting of The American Physical Society

Two-electron spin relaxation in a double quantum dot¹ CHIA-WEI HUANG, MASSOUD BORHANI, XUEDONG HU, Department of Physics, University at Buffalo, the State University of New York — Motivated by recent experiments done on GaAs gate-defined double quantum dots $(DQD)^2$, we study the two-electron spin relaxation in DQD at various energy detuning ε and magnetic fields. In particular, we focus on two limits of interdot energy detuning. For $\varepsilon > 0$, we investigate the spin blockade by evaluating the electron spin relaxation rate from low energy (1,1) triplet states to the ground (0,2) singlet state. For $\varepsilon < 0$, we calculate the electron spin relaxation time at the S(1,1)-T₀ degeneracy to identify the leakage of an ST₀ qubit. Particularly, we explore the relaxation channel due to the hyperfine interaction and the electron-phonon interaction.

 $^1 \rm We$ thank financial supports by NSA/LPS through ARO and DARPA QuEST. $^2 \rm J.$ R. Petta, et~al. Science 309,2180(2005)

Chia-Wei Huang Department of Physics, University at Buffalo, the State University of New York

Date submitted: 15 Dec 2009

Electronic form version 1.4