Power-law temperature dependence of the conductivity of disorder-tuned magnetic thin films1 S. GHOSH, University Florida, R. MISRA, Penn State, A.F. HEBARD, University of Florida — Using a specialized high vacuum deposition/characterization chamber, we study the \textit{in situ} temperature-dependent conductivity $\sigma(T,R_0)$ of thin magnetic films (Fe, Gd and Cr) prepared at different stages of disorder where disorder is characterized by the sheet resistance R_0 measured at $T = 5$ K. Our observation of power-law dependences of the form, $\sigma(T,R_0) = A + BT^P$, has also been noted in numerous experiments on other materials including indium oxide, 2D Si inversion layers and amorphous NiSi alloys. For our samples, the fitting parameters A, B and P vary systematically with increasing disorder. We discuss two regimes of behavior: In the first weak disorder regime, the power-law dependence represents a quantum correction to the classical Boltzmann conductivity due to spin-wave scattering. This contribution can appear either alone (Cr) or simultaneously (Gd) with the well-known logarithmic corrections due to weak localization. In the second regime with greater disorder, we utilize T-dependent reduced activation energy plots of $\sigma(T)$ for sets of films spanning a large range of disorder strengths to show that there are narrow regions of disorder strength where pure power-law behavior ($A = 0$) dominates.

1Research supported by the NSF under grant number DMR 0704240.

S. Ghosh
University of Florida

Date submitted: 15 Dec 2009