Abstract Submitted for the MAR10 Meeting of The American Physical Society

Josephson and Multi-Gap Quasi-Particle Tunneling in Crystalline MgB₂-based Junctions with an MgO Sputtered Barrier¹ JEAN-BAPTISTE LALOE, MIT, J. S. MOODERA, SCTF TEAM — MgB₂ is a multi-gap superconductor with a T_C of 39K and a hexagonal structure. This simple and stable compound is very attractive for device applications. We have deposited and patterned micron-sized SIS tunnel junctions with highly textured MgB₂ electrodes grown by MBE co-evaporation with sputter-deposited MgO tunnel barriers, in an entirely in-situ process. This method enabled us to obtain low resistance junctions with very good oxide coverage. We present I - V and dI/dV data displaying Josephson pair tunneling as well as the quasi-particle tunneling signature of both the Pi- and Sigma-bands of the MgB_2 . Our experimental gap values agree with theoretical calculations. Although our MgB_2 films were *c*-axis oriented, growth-related roughness of the bottom MgB₂ enable a/b-axis tunneling and thus explain the observed Sigmaband features. We link our data to a simple model assuming tunneling to occur from both the Pi- and Sigma-bands in parallel, proportionally weighted depending on the interfacial topography.

¹Work supported by ONR Grant N00014-061-0158

Jean-Baptiste Laloe Francis Bitter Magnet Lab, MIT

Date submitted: 20 Nov 2009

Electronic form version 1.4