Incompressible Biaxial Nematic Liquid Crystal Elastomers for Artificial Muscles

P.E. CLADIS1, Advanced Liquid Crystal Tech., SIMON KRAUSE2, Macromolecular Chemistry, YUSRIL YUSUF3, Physics Department, S. HASHIMOTO4, Department of Applied Quantum Physics and Nuclear Engineering, L. FEL5, Department of Civil Engineering, HEINO FINKELMANN6, Macromolecular Chemistry, SHOICHI KAI7, Graduate School of Systems Life Sciences — Assuming only incompressibility, in the simplest complete theory for monodomain liquid crystalline elastomers as rectangular parallelepipeds, we find two biaxial nematic phases, N_{2+} and N_{2-} with a first order $N_{2+} - N_{2-}$ transition exhibiting spontaneous shape change. We identify N_{2+} as icosahedral (Y_h) and N_{2-}, as simple orthorhombic (D_{2h}) nematics. Using standard orientational mechanics, we derive the stress-strain behavior before swelling to pin-point the recently discovered elastic strain limits for swelling with 5CB.

1Summit, NJ 07902-1314
2Freiburg University, 79104 Freiburg, Germany
3Gadj Mada University, Yogyakarta, Indonesia
4Kyusu University, Fukuoka 819-0395, Japan
5Technion-IIT, 32000 Haifa, Israel
6Freiburg University, 79104 Freiburg, Germany
7Kyushu University, Fukuoka 819-0395, Japan

Patricia Cladis
Advanced Liquid Crystal Tech.

Date submitted: 20 Nov 2009
Electronic form version 1.4