Abstract Submitted for the MAR10 Meeting of The American Physical Society

Incompressible Biaxial Nematic Liquid Crystal Elastomers for Artificial Muscles P.E. CLADIS¹, Advanced Liquid Crystal Tech., SIMON KRAUSE², Macromolecular Chemistry, YUSRIL YUSUF³, Physics Department, S. HASHIMOTO⁴, Department of Applied Quantum Physics and Nuclear Engineering, L. FEL⁵, Department of Civil Engineering, HEINO FINKELMANN⁶, Macromolecular Chemistry, SHOICHI KAI⁷, Graduate School of Systems Life Sciences — Assuming only incompressibility, in the simplest complete theory for monodomain liquid crystalline elastomers as rectangular parallelepipeds, we find two biaxial nematic phases, N_{2+} and N_{2-} with a first order $N_{2+} - N_{2-}$ transition exhibiting spontaneous shape change. We identify N_{2+} as icosahedral (Y_h) and N_{2-} , as simple orthorhombic (D_{2h}) nematics. Using standard orientational mechanics, we derive the stress-strain behavior before swelling to pin-point the recently discovered elastic strain limits for swelling with 5CB.

¹Summit, NJ 07902-1314

²Freiburg University, 79104 Freiburg, Germany
³Gadj Mada University, Yogyakarta, Indonesia
⁴Kyusu University, Fukuoka 819-0395, Japan
⁵Technion-IIT, 32000 Haifa, Israel
⁶Freiburg University, 79104 Freiburg, Germany
⁷Kyushu University, Fukuoka 819-0395, Japan

Patricia Cladis Advanced Liquid Crystal Tech.

Date submitted: 20 Nov 2009

Electronic form version 1.4