Effect of Charge and Composition on the Structural Fluxionality and Stability of Nine Atom Tin-Bismuth Zintl Analogues

PENEE CLAYBORNE, Virginia Commonwealth University, UJJWAL GUPTA, Pennsylvania State University, ARTHUR REBER, Virginia Commonwealth University, JOSHUA MELKO, A.W. CASTLEMAN, Pennsylvania State University, SHIV KHANNA, Virginia Commonwealth University — Synergistic studies of bismuth doped tin clusters combining photoelectron spectra with first principles theoretical investigations establish that highly charged Zintl ions, observed in the condensed phase, can be stabilized as isolated gas phase clusters through atomic substitution that preserves the overall electron count but reduces the net charge. Mass spectrometry studies reveal that Sn₈Bi⁻, Sn₇Bi₂⁻, and Sn₆Bi₃⁻ exhibit higher abundances than neighboring species, and photoelectron spectroscopy show that all of these heteroatomic gas phase species have high adiabatic electron detachment energies. Sn₆Bi₃⁻ is found to be a particularly stable cluster, having a large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. Theoretical calculations demonstrate that Sn₈Bi⁻, Sn₇Bi₂⁻, and Sn₆Bi₃⁻ are deltahedral clusters and isoelectronic to the Zintl polyatomic clusters Sn₁₂⁻, Sn₁₀⁻, and Sn₈⁴⁻, respectively. However, the fluxionality reported for tin-Zintl clusters is suppressed by substituting Sn atoms with Bi atoms in Sn₈Bi⁻ and Sn₆Bi₃⁻. The similarities between bismuth doped deltahedral tin clusters and deltahedral Zintl polyanions, suggest these gas phase Zintl clusters (GPZC) may find use for building blocks of cluster assembled materials.

1We gratefully acknowledge support from the U.S. Department of Energy Grant DE-FG02-
Penee Clayborne
Virginia Commonwealth University

Date submitted: 20 Nov 2009
Electronic form version 1.4