Origin of Giant Saturation Magnetization in Fe\textsubscript{16}N\textsubscript{2} thin film

JIAN-PING WANG, NIAN JI, XIAOQI LIU, YUNHAO XU, Center for Micromagnetics and Information Technologies, University of Minnesota, C. SANCHEZ-HANKE, NSLS, Brookhaven National Laboratory — Can localized 3d electron exist in strong ferromagnetic metal because of some unusual correlation effect? This question is related to the controversy on whether α''-Fe\textsubscript{16}N\textsubscript{2} has giant saturation magnetization which has been debated for decades since its first observation1,2. Here we report the synthesis of α''-Fe\textsubscript{16}N\textsubscript{2} thin films. The highest moment is obtained to be 3.0μ_B/Fe. XMCD experiment is systematically performed on a series of iron nitrides samples. Among all the iron nitrides phases, it is found that there exist highly localized 3d electrons only in chemically disordered Fe\textsubscript{8}N and ordered F\textsubscript{16}N\textsubscript{2} phases3. This discovery hints at the origin of the giant magnetic moment is correlated with the 3d electron localization in such system. First principle calculation (LDA+U) further verifies that the d electron localization is the key element to rationalize the high moment formation in iron nitrides system4. We also provide a speculative outlook on the giant saturation magnetization formation based on “cluster + atom” concept.