Abstract Submitted for the MAR10 Meeting of The American Physical Society

Doping

Dependence of Resonant spin excitations in $Ba_{1-x}K_xFe_2As_2^1$ RAYMOND OSBORN, STEPHAN ROSENKRANZ, JOHN-PAUL CASTELLAN, FRANK WEBER, EUGENE GOREMYCHKIN, DUCK-YOUNG CHUNG, ILYA TODOROV, HELMUT CLAUS, Argonne National Laboratory, MERCOURI KANATZIDIS, Northwestern University, TATIANA GUIDI, Rutherford Appleton Laboratory — The observation of a resonant spin excitation at $\omega=14$ meV in $Ba_{0.6}K_{0.4}Fe_2As_2$ [Nature 456, 930 (2008)] provided the first phase-sensitive evidence of extended s_{\pm} symmetry in the iron arsenide superconductors. We will discuss subsequent measurements of the doping dependence of the dynamic magnetic susceptibility in $Ba_{1-x}K_xFe_2As_2$ from x=0.2 to 0.9 using inelastic neutron scattering from polycrystalline samples. The resonance is observed below T_c at all values of x centered on the Γ-M point at $Q\approx 1.2 \text{Å}^{-1}$, but it progressively broadens and weakens in the overdoped regime. We will discuss the scaling of the resonance energy with T_c and compare the Q- dependence with theoretical estimates based on the evolution of the Fermi surface with hole doping.

¹Supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357

Raymond Osborn Argonne National Laboratory

Date submitted: 20 Nov 2009 Electronic form version 1.4