Doping

Dependence of Resonant spin excitations in $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ 1 RAYMOND OSBORN, STEPHAN ROSENKRANZ, JOHN-PAUL CASTELLAN, FRANK WEBER, EUGENE GOREMYCHKIN, DUCK-YOUNG CHUNG, ILYA Todorov, HELMUT CLAUS, Argonne National Laboratory, MERCOURI KANATZIDIS, Northwestern University, TATIANA GUIDI, Rutherford Appleton Laboratory — The observation of a resonant spin excitation at $\omega = 14\text{meV}$ in $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ [Nature 456, 930 (2008)] provided the first phase-sensitive evidence of extended s_\pm symmetry in the iron arsenide superconductors. We will discuss subsequent measurements of the doping dependence of the dynamic magnetic susceptibility in $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ from $x = 0.2$ to 0.9 using inelastic neutron scattering from polycrystalline samples. The resonance is observed below T_c at all values of x centered on the Γ-M point at $Q \approx 1.2\text{Å}^{-1}$, but it progressively broadens and weakens in the overdoped regime. We will discuss the scaling of the resonance energy with T_c and compare the Q-dependence with theoretical estimates based on the evolution of the Fermi surface with hole doping.

1Supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357

Raymond Osborn
Argonne National Laboratory

Date submitted: 20 Nov 2009

Electronic form version 1.4