Radiation Effects on Polypropylene Carbon Nanofibers Composites: Spectroscopic Investigations

JOHN HAMILTON, THOMAS MION, ALIN CRISTIAN CHIPARA, ELAMIN I. IBRAHIM, KAREN LOZANO, STEVEN TIDROW, DORINA MAGDALENA CHIPARA, MIRCEA CHIPARA, The University of Texas Pan American — Dispersion of carbon nanostructures within polymeric matrices affects their physical and chemical properties (increased Young modulus, improved thermal stability, faster crystallization rates, higher equilibrium degree of crystallinity, modified glass, melting, and crystallization temperatures, enhanced thermal and electrical conductivity). Nevertheless, little is known about the radiation stability of such nanocomposites. The research is focused on spectroscopic investigations of radiation-induced modifications in isotactic polypropylene (iPP)-vapor grown nanofiber (VGCNF) composites. VGCNF were dispersed within iPP by extrusion at 180°C. Composites containing various amounts of VGCNFs ranging from 0 to 20 % wt. were prepared and subjected to gamma irradiation, at room temperature, at various integral doses (10 MGy, 20 MGy, and 30 MGy). Raman spectroscopy, ATR, and WAXS were used to assess the radiation-induced modifications in these nanocomposites. Acknowledgements: This research was supported by the Welch Foundation (Department of Chemistry at UTPA), by Air Force Research Laboratory (FA8650-07-2-5061) and by US Army Research Laboratory/Office (W911NF-08-1-0353).

Mircea Chipara
The University of Texas Pan American

Date submitted: 20 Nov 2009
Electronic form version 1.4