Comparative study of flux creep in superconductors over a broad spectrum of pinning properties1 LEONARDO CIVALE, SCOTT BAILY, BORIS MAIOROV, Superconductivity Technology Center, Los Alamos National Laboratory — Thermal fluctuations are responsible for the phenomenon of flux creep in type-II superconductors, which allows some level of vortex motion even when the current density is below the critical current density (J_c). Creep studies in the high temperature oxide superconductors (HTS) have been a topic of continuous attention since the discovery of these materials. The topic is of both fundamental interest, as HTS vortex matter exhibits a rich variety of dynamic regimes, and practical relevance, as creep reduces the “effective” J_c in wires that are used for power applications. To gain a more general understanding of creep phenomena, we have performed comparative studies of the time relaxation of the persistent superconducting current, $J(t)$, in a variety of type-II superconductors. The $J(t)$ was determined from magnetization (via the critical state model) using a SQUID magnetometer. The materials studied include thin films and single crystals of HTS, pnictides, MgB$_2$ and conventional low T_c superconductors. This allows the spanning of several orders of magnitude in J_c, in the fraction J_c/J_0, where J_0 is the depairing current density, and in the Ginzburg number (G_i), which measures the importance of thermal fluctuations. I will discuss the evidence for glassy or non-glassy relaxation in the various systems.

1Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering

Boris Maiorov
Superconductivity Technology Center, Los Alamos National Laboratory

Date submitted: 20 Nov 2009
Electronic form version 1.4