Mg-related EPR signal in high hole density GaN1 MARY ELLEN ZVANUT, JAMIYANA DASHDORJ, University of Alabama at Birmingham — Although GaN devices have successfully entered technology, continued development of nitride electronics is hampered by the limitations of p-type doping. For this reason, we have employed electron paramagnetic resonance (EPR) spectroscopy to study GaN:Mg grown with high Mg (1-4x1020 \text{cm-3}) and hole densities 1-40x1018 \text{cm-3}. EPR measurements are made in the dark and under illumination at 4 K. Consistent with measurements made on less heavily doped films, the Mg-related EPR signal exhibits a sample-dependent anisotropy which depends on the hole density. Unlike lower doped samples, however, the increased EPR signal intensity created by the high hole density reveals photo-induced changes which suggest direct defect-to-band transitions. Detailed stepped wavelength photo-EPR results indicate that the Mg-related defect may be ionized with photon energy below 1.2 eV, likely related to capture of an electron from the valence band. A second ionization near 2.3 eV remains to be understood.

1The work is supported by Dr. Paul Maki, Office of Naval Research, and samples were grown at Duke University and The Georgia Institute of Technology.

Mary Ellen Zvanut
University of Alabama at Birmingham

Date submitted: 20 Nov 2009