Optical Control of an Electron Spin in a Single Self-Assembled Quantum Dot

KATHERINE TRUEX, ERIK D. KIM, BO SUN, XIAODONG XU, DUNCAN G. STEEL, University of Michigan, ALLAN BRACKER, DANIEL GAMMON, Naval Research Laboratory, LU SHAM, University of California San Diego — Optically driven self-assembled quantum dots are a leading candidate for next generation quantum computers because of their high speed and potential for relatively compact design. In this approach, each dot is charged with a single electron (or hole) whose spin serves as the quantum bit (“qubit”). We present our recent experimental results demonstrating qubit initialization, rotation through a stimulated Raman excitation, and optical readout, as well as a geometric phase gate. Optically induced coupling between the dots through the negatively charged exciton should allow for the critical entangling operations and for conditional two-qubit gates. Conditional gates combined with single qubit gates form the building blocks from which any quantum computing algorithm can be constructed.

1Supported by ARO, DARPA, AFOSR, ONR, NSA/LPS, NSF, IARPA
2Currently at Stanford University
3Currently at Cornell University