Abstract Submitted for the MAR10 Meeting of The American Physical Society

Point contact Andreev reflection spectroscopic (PCARS) studies on 122-type iron-based superconductors¹ XIN LU, W.K. PARK, L.H. GREENE, Physics and FSMRL, UIUC, H.Q. YUAN, Zhejiang Univ., China, G.F. CHEN, G.L. LUO, N.L. WANG, Chinese Academy of Science, China, A.S. SE-FAT, M.A. MCGUIRE, R. JIN, B.C. SALES, D. MANDRUS, Oak Ridge National Lab, J. GILLETT, S.E. SEBASTIAN, Cambridge Univ., UK — PCARS is applied to investigate the superconducting gap in iron pnictide single crystal superconductors of the AFe_2As_2 (A=Ba, Sr) family with two categories of G(V) curves observed [1]: one where Andreev reflection (AR) is present for $(Ba_{0.6}K_{0.4})Fe_2As_2$ and $Ba(Fe_{0.9}Co_{0.1})_2As_2$, and the other without AR but a $V^{2/3}$ shape for $Sr_{0.6}Na_{0.4}Fe_2As_2$ and $Sr(Fe_{0.9}Co_{0.1})_2As_2$. The latter is also observed in the nonsuperconducting parent compound BaFe₂As₂. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors. A gap size ~ 3.0 -4.0 meV with $2\Delta_0/k_BT_c \sim 2.0-2.6$ is observed for PCARS on Ba_{0.6}K_{0.4}Fe₂As₂. For the Ba(Fe_{0.9}Co_{0.1})₂As₂, G(V) curves typically display a zero-bias conductance peak, sometimes with a V-shape background. [1] Xin Lu et al., arXiv:0910.4230

¹XL thanks NSF DMR 07-06013. Illinois acknowledges support by the DoE DEFG02-07ER46453 through FS-MRL and CMM. ORNL is supported by DOE-BES-DMSE.

Xin Lu Physics and FSMRL, UIUC

Date submitted: 03 Dec 2009

Electronic form version 1.4