Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Strain-induced Ferroelectricity in Ruddlesden-Popper Sr\((n+1)\)Ti\((n)\)O\((3n+1)\) Phases
N. ORLOFF, NIST, C. LEE, Cornell University, C. FENNIE, Cornell, X. X. XI, Pennsylvania State University, I. TAKEUCHI, University of Maryland, J. C. BOOTH, NIST, D. G. SCHLOM, Cornell University — We performed broadband in-plane dielectric measurements of thin-film Sr\((n+1)\)Ti\((n)\)O\((3n+1)\)(\(n = 2, 3, 4, 5, 6\)) Ruddlesden-Popper homologous series as a function of temperature and bias field. The effect of strain on these materials is interesting, because SrTiO\(_3\), the \(n = \infty\) series member, exhibits ferroelectricity at room temperature when strained on DyScO\(_3\) substrates. Here, we explore the effect of strain on the dielectric properties of Sr\((n+1)\)Ti\((n)\)O\((3n+1)\)(\(n = 2, 3, 4, 5, 6\)) thin-films on LSAT, DyScO\(_3\) and GdScO\(_3\).