Abstract Submitted for the MAR10 Meeting of The American Physical Society

Effects of charge density waves on flux dynamics in weak-pinning single crystals of $NbSe_2$: free flux flow, flux-core size effects, and unexpected doubling of $J_c(H)$ 'peak effect'¹ PETER FAVREAU, ALBERT A. GA-PUD, SUNHEE MORAES, U. South Alabama, LANCE DELONG, U. Kentucky, ARNEIL P. REYES, NHMFL, JAMES R. THOMPSON, U. Tennessee-Knoxville and ORNL, DAVID K. CHRISTEN, ORNL — The interaction of two different ordering schemes – charge density waves (CDWs) and superconductivity – is studied in high-quality samples of NbSe₂, particularly in the motion of magnetic flux quanta. More specifically, the study is on the effect of "switching off" the CDW phase – effected by doping with Ta - on the magnetic-field H dependence of: (i) the Lorentzforce-driven free flux flow (FFF) resistivity ρ_f associated with the ordered motion of vortices, and (ii) critical current density J_c . FFF is achieved for the first time in this material. The field dependence of ρ_f deviates from traditional Bardeen-Stephen flux flow and is more consistent with effects of flux *core size* as predicted by Kogan and Zelezhina. However, the suppression of CDW's seems to have no significant effect on these properties. On the other hand, $J_c(H)$ shows a surprising *double* peak for the CDW-suppressed sample –contrary to previous studies in which the J_c peak was shown to disappear. Possible mechanisms are discussed.

¹Funded by NSF and Research Corporation.

Albert Gapud U. South Alabama

Date submitted: 20 Nov 2009

Electronic form version 1.4