Strong Dissipation Inhibits Losses and Induces Correlations in Cold Molecular Gases
MATTHIAS LETTNER, Max Planck Institute for Quantum Optics, Hans Kopfermann Str.1, D-85748 Garching

Atomic quantum gases in the strongcorrelation regime offer unique possibilities to explore a variety of manybody quantum phenomena. Reaching this regime has usually required both strong elastic and weak inelastic interactions, as the latter produce losses. We show that strong inelastic collisions can actually inhibit particle losses and drive a system into a stronglycorrelated regime. Studying the dynamics of ultracold molecules in an optical lattice confined to one dimension, we show that the particle loss rate is reduced by a factor of 10. Adding a lattice along the one dimension increases the reduction to a factor of 2000. Our results open up the possibility to observe exotic quantum manybody phenomena with systems that suffer from strong inelastic collisions.