Abstract Submitted for the MAR10 Meeting of The American Physical Society

Magnetoresistivity of V_3 Si single crystal: **Deviations** from Köhler's Rule and details of the Martensitic transformation¹ SUNHEE MORAES, ALBERT A. GAPUD, PETER FAVREAU, University of South Alabama, JAMES R. THOMPSON, University of Tennessee-Knoxville and Oak Ridge National Laboratory, DAVID K. CHRISTEN, Oak Ridge National Laboratory — The effect of the Martensitic transformation on the field dependence of the normalstate transport magnetoresistivity $\rho(H)$ in high-quality samples of A15 compound V₃Si is studied, in the context of the traditional Kohler's Rule, $\Delta \rho / \rho_0 = f(H/\rho_0) =$ $A(H/\rho_0)^b$, where A and b are constants. Contrary to the results of a previous study by Zotos et al. on polycrystalline samples (Sol. State Comm. 50 (5), 1984, p. 453) which found that $b \sim 1.7$ in the vicinity of the Martensitic transformation temperature T_m , the current study on a single crystal finds two regimes for bon either side of $H/\rho_0 \sim 0.3 \text{ T}/(\mu\Omega \text{cm})$: For lower fields, $b \sim 0.8$; while $b \sim 1.4$ for higher fields up to 9 T. There is also indication of a sharp deviation in a very small window around T_m . These results could reveal more details about the Martensitic transformation, including the possible role of strain fields, as will be discussed.

¹This research is funded by grants from the National Science Foundation and from Research Corporation.

Albert A. Gapud U. South Alabama

Date submitted: 20 Nov 2009

Electronic form version 1.4