Terminating Ventricular Fibrillation Using Pulsed Far-Field Stimulation in Whole Rabbit Hearts1 AMGAD SQUIRES, Cornell University, DANIEL HORNUNG, PHILIP BITTIHN, DONG XIA WU, VALENTIN KRINSKY, Max Planck Institute for Dynamics and Self-Organization, MARKUS ZABEL, University Hospital Göttingen, EBERHARD BODENSCHATZ, STEFAN LUTHER, Max Planck Institute for Dynamics and Self-Organization — During lifethreatening cardiac fibrillation, chaotic spatio-temporal dynamics is mediated by vortex-like rotating waves. Current defibrillation strategies rely on global control through high-energy shocks, which may have severe side-effects including traumatic pain and tissue damage. Far-field antifibrillation pacing terminates fibrillation using a train of low-energy electric pulses [1,2]. Using optical mapping in isolated rabbit heart preparations, we evaluate the efficiency and robustness of this approach. We found that a series of pulses at low energies (<2.0 J) is sufficient to extinguish ventricular fibrillation with a success rate of 95%. We will discuss the physical mechanisms involved.

1We gratefully thank the BMBF, the NIH and the Max Planck Society for funding.