Growth mediated feedback and the abrupt onset of antibiotic resistance

J. BARRETT DERIS, Center for Theoretical Biological Physics, UCSD

Recent results in our lab indicate that global gene expression will change in a growth-dependent manner for bacteria in sublethal antibiotic levels. We analyzed a system containing a constitutively expressed drug resistance gene and found that growth-mediated feedback provided a mechanism for bistable growth rates. That is, two identical cell-lines in the same antibiotic-infused media may respond with distinct growth rates. Our experimental work with cells carrying this resistance gene has shown that a rapid drop in growth occurs over a relatively small range of antibiotic. This result is consistent with a growth plateau arising in our analysis of the feedback mechanism. Furthermore, experiments have shown that a culture’s degree of drug resistance depends on the initial growth conditions prior to exposure to high levels of antibiotics. This result is consistent with the predicted existence of a hysteretic regime near the growth plateau. The work reveals concrete mechanisms by which bacteria cope with high levels of antibiotics and illustrates the importance of considering growth-mediated feedback on gene circuits.

1This material is based upon work supported under a National Science Foundation Graduate Research Fellowship and by the NSF through CTBP (PHY-0822283).

J. Barrett Deris
Center for Theoretical Biological Physics, UCSD

Date submitted: 23 Nov 2009
Electronic form version 1.4