In Situ Studies of Domain Dynamics and Wall Pinning Using Scanning Transmission Electron Microscopy

HYE JUNG CHANG, SERGEI KALININ, Oak Ridge National Laboratory, PU YU, RAMAMOORTHY RAMESH, University of California Berkeley, SASWATA BHATTACHARYA, LONG-QUING CHEN, Pennsylvania State University, STEPHEN PENNYCOOK, ALBINA BORISEVICH, Oak Ridge National Laboratory — The mechanism of ferroelectric domain nucleation and growth is studied using in-situ Scanning Tunneling Microscopy (STM) – Scanning Transmission Electron Microscopy (STEM). A 300 nm multiferroic BiFeO₃ thin film is grown on DyScO₃ and has a large density of 71° domain walls. A local electrical field is applied using a W tip inside the STEM. Domain formation can be detected from the strain contrast associated with the newly formed ferroelastic domain wall. A step-wise increase of probe bias reveals the critical voltage for the formation of a new domain as 800 mV. This critical domain nucleation bias is much lower than the value observed by Piezoresponse Force Microscopy, which is of the order of 2-5 V. Notably, it also depends on the sample thickness along the beam direction. Repeated switching experiments in the vicinity of a pre-existing 71° domain wall reveal that the acute angle region between the domain wall and the surface is a preferential nucleation site. A strong asymmetry of domain wall pinning is observed during domain growth. The dependence of domain nucleation and growth kinetics on applied bias will also be discussed.

The research is sponsored by the U.S. DOE Division of Materials Sciences and Engineering.

Stephen Pennycook
Oak Ridge National Laboratory

Date submitted: 29 Nov 2009