Abstract Submitted for the MAR10 Meeting of The American Physical Society

Chemical, magnetic and orbital order in the substituted double perovskite $\mathbf{Sr}_{(1x)}\mathbf{Ca}_{(x)}\mathbf{Mn}_{0.5}\mathbf{Ru}_{0.5}\mathbf{O}_3^1$ REBECCA RICCIARDO, Ohio State University, PATRICK WOODWARD, HEATHER CUTHBERT, QINGDI ZHOU, BRENDAN KENNEDY, ZHAOMING ZHANG, MAXIM AVDEEV, LING-YUN JANG — The structural and magnetic properties of $Sr_{(1x)}Ca_{(x)}Mn_{0.5}Ru_{0.5}O_3$ SrMn_{0.5}Ru_{0.5}O₃ exhibits antiferromagnetic ordering, have been investigated. $T_N \approx 200$ K. Neutron powder diffraction of this perovskite indicates the presence of orbital ordering of the occupied $Mn^{+3} d_z 2$ orbitals, stabilizing the spin ordering corresponding to the AFM C-type structure. The substitution of smaller Ca⁺² for Sr⁺² on the A-site induces a change in the octahedral tilt system, $(a^0a^0c^-)$ to $(a^-b^+a^-)$ forcing a loss of this type of orbital ordering for $x \ge 0.2$. This is accompanied by a crossover to a ferromagnetic ground state with $200 \text{K} \leq \text{T}_C \leq 300 \text{K}$ even in the absence of long range chemical order. Magnetic data and neutron powder diffraction of $CaMn_{0.5}Ru_{0.5}O_3$ and $Sr_{0.5}Ca_{0.5}Mn_{0.5}Ru_{0.5}O_3$ reveal reduced magnetic moments and imply a complex magnetic behavior as well as a complete loss of orbital ordering for $CaMn_{0.5}Ru_{0.5}O_3$. X-ray absorption studies show increased electron transfer from Mn to Ru.

¹Funding provided by the Center for Emergent Materials at the Ohio State University, an NSF MRSEC (Award Number DMR-0820414).

Rebecca Ricciardo Ohio State University

Date submitted: 30 Nov 2009

Electronic form version 1.4