Abstract Submitted for the MAR10 Meeting of The American Physical Society

The Optical Bandgap of $Sr_{n+1}Ti_nO_{3n+1}$ (n=1 \sim 5, 10) Ruddlesden-Popper Phases CHEHUI LEE, Penn State Univ., NIKOLAS PODRAZA, XIAOX-ING XI, DARRELL SCHLOM — The $Sr_{n+1}Ti_nO_{3n+1}$ Ruddlesden-Popper homologous series is of particular interest because its $n=\infty$ member $SrTiO_3$ exhibits such a wide range of properties including high dielectric constant, tunable dielectric constant, and superconductivity. In this study we explore the optical bandgaps of the $\operatorname{Sr}_{n+1}\operatorname{Ti}_n \operatorname{O}_{3n+1}(n=1\sim5, 10)$ Ruddlesden-Popper phases. This is the first time that a phase-pure n=10 Ruddlesden-Popper phase has ever been made. $Sr_{n+1}Ti_nO_{3n+1}$ $(n=1\sim5, 10)$ thin films were grown on (001) LSAT substrates by reactive molecularbeam epitaxy. (001) LSAT substrates provide good lattice match (< 1% mismatch) to the entire $Sr_{n+1}Ti_nO_{3n+1}$ series. For the n=10 sample, we also deposited it on (001) SrTiO₃ substrates. SrTiO₃ substrates provides nearly strain-free growth for the n=10 phase. The optical properties of the thin films were studied using ex situ spectroscopic ellipsometry. We measured the indirect bandgap of the $Sr_{n+1}Ti_nO_{3n+1}$ $(n=1\sim5, 10)$ Ruddlesden-Popper phases on LSAT and their values decrease monotonically from 3.48 eV (n=1) to 3.14 eV $(n=\infty)$ with increasing n. The bandgaps of the $Sr_{n+1}Ti_nO_{3n+1}$ (n=1~5, 10) Ruddlesden-Popper phases fall between the high bandgap SrO (n=0) and SrTiO₃ ($n=\infty$) end members of the series.

> Chehui Lee Penn State Univ.

Date submitted: 30 Nov 2009

Electronic form version 1.4