Acceleration of DFT calculations with dual parallel method1

HIDEKAZU TOMONO, Meiji University, JAPAN, MASARU AOKI, Shizuoka Sangyo University, JAPAN, KAZUO TSUMURAYA, Meiji University, JAPAN — We accelerate an \textit{ab initio} periodic DFT (Density Functional Theory) calculation using both the MPI (Message Passing Interface) and GPGPU. The acceleration of the calculation has been achieved by the sequence of scalar, vector, parallel, and multi-core parallel processings. This sequence has requested the modifications of computation algorithms of the \textit{ab initio} codes. For instance, periodic methods have invoked the MPI parallelization for each k-point calculation. Next we implement a heterogeneous multi-core processing, GPGPU (General Purpose computing on Graphics Processing Units), into a planewave based pseudopotential code. In this paper, we propose a new algorithm to implement the processing into MPI. We will discuss the extent of the acceleration using the two parallel methods. This talk is the extension of the earlier application of the GPGPU to a single CPU code at APS March Meeting 2009 Y13.00002.

1We thank Meiji University for a fellowship; International Research Award.