Abstract Submitted for the MAR10 Meeting of The American Physical Society

Doping effects in Bi_2Se_3 and Bi_2Te_3 topological insulators¹ Y.S. HOR, A.J. WILLIAMS, J.G. CHECKELSKY, P. ROUSHAN, J. SEO, A. RICHARDELLA, Y. XIA, Q. XU*, H.W. ZANDBERGEN*, M.Z. HASAN, A. YAZ-DANI, N.P. ONG, R.J. CAVA, PRINCETON UNIV TEAM, *DELFT INST OF TECH TEAM — Topological insulators are found to have a bulk electronic gap and a gapless surface state. The surface state has been observed in Bi_2Se_3 and Bi₂Te₃ by ARPES and STM, but is still considered a challenging problem for transport measurements due to the dominant bulk conductance. By chemical doping, the Fermi level can be tuned to fall inside the band gap^2 and therefore suppress the bulk conductivity. Non-metallic conducting Bi₂Se₃ crystals are obtained. Previously unobserved p-type behavior has been induced³ and a novel magnetofingerprint signal⁴ is seen through low level Ca-doping in Bi₂Se₃. Bi₂Se₃ can also be tuned to a bulk superconductor, with $T_c \sim 3.8$ K, by Cu-intercalation in the van der Waals gaps.⁵ This shows that Cooper pairing is possible in Bi_2Se_3 with implications for Majorana fermion physics study and potential quantum computing devices. Mn-doped Bi₂Te₃ has ferromagnetic transition at ~ 15 K, suggesting a possible magnetic topological insulator.

 1 Funding: FAA9550-06-1-0530 (AFOSR), DMR-0819860 (NSF MRSEC). 2 Hor et al. PRB **79** 195208 (09) 3 Ibid. 4 Checkelsky et al. arXiv:0909.1840 5 Hor et al. arXiv:0909.2890.

Y.S. Hor

Date submitted: 30 Nov 2009

Electronic form version 1.4