Doping effects in Bi$_2$Se$_3$ and Bi$_2$Te$_3$ topological insulators

Y.S. HOR, A.J. WILLIAMS, J.G. CHECKELSKY, P. ROUSHAN, J. SEO, A. RICHTERella, Y. XIA, Q. XU*, H.W. ZANDBERGEN*, M.Z. HASAN, A. YAZDANI, N.P. ONG, R.J. CAVA, PRINCETON UNIV TEAM, *DELT INST OF TECH TEAM — Topological insulators are found to have a bulk electronic gap and a gapless surface state. The surface state has been observed in Bi$_2$Se$_3$ and Bi$_2$Te$_3$ by ARPES and STM, but is still considered a challenging problem for transport measurements due to the dominant bulk conductance. By chemical doping, the Fermi level can be tuned to fall inside the band gap2 and therefore suppress the bulk conductivity. Non-metallic conducting Bi$_2$Se$_3$ crystals are obtained. Previously unobserved p-type behavior has been induced3 and a novel magnetofingerprint signal4 is seen through low level Ca-doping in Bi$_2$Se$_3$. Bi$_2$Se$_3$ can also be tuned to a bulk superconductor, with T_c \sim3.8 K, by Cu-intercalation in the van der Waals gaps.5

This shows that Cooper pairing is possible in Bi$_2$Se$_3$ with implications for Majorana fermion physics study and potential quantum computing devices. Mn-doped Bi$_2$Te$_3$ has ferromagnetic transition at \sim15 K, suggesting a possible magnetic topological insulator.

1Funding: FAA9550-06-1-0530(AFOSR), DMR-0819860(NSF MRSEC).
2Hor et al. PRB 79 195208 (09)
3Ibid.
4Checkelsky et al. arXiv:0909.1840
5Hor et al. arXiv:0909.2890.