Instantaneous Gelation in Smoluchowski’s Coagulation Equation Revisited

COLM CONNAUGHTON, Centre for Complexity Science, University of Warwick, UK, ROBIN BALL, Department of Physics, University of Warwick, UK, THORWALD STEIN, Department of Meteorology, University of Reading, UK, OLEG ZABORONSKI, Mathematics Institute, University of Warwick, UK — We study the solutions of a regularised Smoluchowski coagulation equation with instantaneously gelling kernels. Regularisation is done by introducing a cut-off, $M_{\text{max}}$, which physically corresponds to the removal from the system of clusters having mass greater than $M_{\text{max}}$. Careful numerical simulations demonstrate that, for monodisperse initial data, the gelation time for $\nu > 1$ decreases, albeit logarithmically slowly, as $M_{\text{max}}$ increases. We thereby clearly demonstrate the instantaneous gelation transition numerically for the first time. The slow dependence on $M_{\text{max}}$ explains previous difficulties in characterising the instantaneous gelation transition in simulations and justifies the use of instantly gelling kernels as physical models. We also consider solutions with a source of monomers which ultimately reach a stationary state. Approach to the stationary state is non-trivial. Oscillations results from the interplay between the monomer injection and the cut-off which decay very slowly when the cut-off is large.

Colm Connaughton
Centre for Complexity Science, University of Warwick, UK

Date submitted: 23 Nov 2009

Electronic form version 1.4