Scaling study of Kondo effect in a quantum dot embedded in an Aharonov-Bohm interferometer

RYOSUKE YOSHII, MIKIO ETO, Faculty of Science and Technology, Keio University — The Kondo effect is theoretically investigated in a quantum dot embedded in an Aharonov-Bohm (AB) ring, using the “poor man’s” scaling method. First, we construct an equivalent model in which a quantum dot is coupled to a single lead. The AB interference effect is involved in the magnetic-flux dependence of the density of states in the lead. The scaling analysis of this model yields analytical expressions for the Kondo temperature T_K and logarithmic corrections to the conductance at temperatures $T \gg T_K$. We find that (i) T_K is significantly modulated by the magnetic flux penetrating the ring when the ring size L is much smaller than the size of Kondo cloud, $L_K = \hbar v_F / T_K$, with v_F being the Fermi velocity. T_K is hardly affected by the flux when $L \gg L_K$. (ii) When $L \ll L_K$, the flux dependence of T_K is the smallest around the center of Coulomb valley and becomes remarkable near the edges of the valley.

2R. Yoshii and M. Eto, Physica E, in press.

Ryosuke Yoshii
Faculty of Science and Technology, Keio University

Date submitted: 19 Dec 2009

Electronic form version 1.4