The Glass Transition at Silica/PMMA Nanocomposite Interfaces

RAHMI OZISIK, KATELYN PARKER, RYAN T. SCHNEIDER, RICHARD W. SIEGEL, Rensselaer Polytechnic Institute, JUAN CARLOS CABANELAS, BERNA SERRANO, CLAIRE ANTONELLI, JUAN BASELGA, Universidad Carlos III de Madrid — Local glass transition temperatures (Tg) have been measured in the interfaces of solution blended silica/poly(methyl methacrylate) (PMMA) nanocomposites using fluorescence spectroscopy and compared with Tg measured by differential scanning calorimetry (DSC). It was found that the two types of measurements yielded significantly different information. Combinations of silanes and poly(propylene glycol)-based molecular spacers bound to fluorophores were covalently linked to the surface of the nanoparticles, allowing for variation of the fluorophore response with respect to the distance from the nanofiller surface. Increases in the bulk Tg from the neat PMMA value were found upon the addition of nanofillers, but were independent of the nanofiller concentration when the filler concentration was above 2% by weight. Furthermore, as the size of the grafted molecular spacer was increased, Tg values were found to decrease and approach Tg of the neat PMMA. Owing to variable conformations of the spacers, an effective distribution of fluorophore-silica distances exists, which influences the fluorophores’ response to the transition.

1Supported by NSF (CMMI-0500324) and CICYT (MAT 2007-63722).