Superconductivity in SnO: a Nonmagnetic Analogue to Fe-based Superconductors

DANIEL KHOMSKII, M.K. FORTHAUS, K. SENGUPTA, O. HEYER, Koeln University, Germany, N.E. CHRISTENSEN, A. SVANE, Aarhus University, Denmark, K. SYASSEN, Max-Plank-Institut fuer Festkoerperforschung, Stuttgart, Germany, T. LORENZ, M.M. ABD-ELMEGUID, Koeln University, Germany — We found that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g. β-FeSe, undergoes a transition to a superconducting state for \(p \geq 6 \text{ GPa} \) with a maximum \(T_c \) of 1.4 K at \(p = 9.3 \text{ GPa} \). The pressure dependence of \(T_c \) reveals a dome-like shape and superconductivity disappears for \(p > 16 \text{ GPa} \). It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of \(T_c \) as a function of pressure. M.K. Forthaus et al., Phys.Rev.Lett. 105, 15701 (2010)