Transverse Thermoelectric Conductivity of Bi-layer graphene in quantum Hall Regime

WEI-LI LEE, CHANG-RAN WANG, WEN-SEN LU, Institute of Physics, Academia Sinica, INSTITUTE OF PHYSICS, ACADEMIA SINICA TEAM — We performed electric and thermoelectric transport measurements of bilayer graphene in a magnetic field up to 15 Tesla. The transverse thermoelectric conductivity α_{xy}, determined from four transport coefficients, attains a peak value of $\alpha_{\text{xy,peak}}$ whenever chemical potential lies in the center of a Landau level. The temperature dependence of $\alpha_{\text{xy,peak}}$ is dictated by the disorder width W_L. For $k_B T / W_L \leq 0.2$, $\alpha_{\text{xy,peak}}$ is nominally linear in temperature, which gives $\alpha_{\text{xy,peak}} / T = 0.19 \pm 0.03 \text{nA/K}^2$ independent of the magnetic field, temperature and Landau Level index. At $k_B T / W_L \geq 0.5$, $\alpha_{\text{xy,peak}}$ saturates to a value close to the predicted universal value of $4 \times (\ln 2) k_B e / h$ according to the theory of Girvin and Jonson. We remark that an anomaly is found in α_{xy} near the charge neutral point, similar to that in single-layer graphene.