Gauge field fluctuations in three-dimensional topological Mott insulators1 WILLIAM WITCZAK-KREMPA, TING PONG CHOY2, University of Toronto, Canada, YONG BAEK KIM, University of Toronto, Canada & Korea Institute for Advanced Study, Korea — We discuss the low-energy properties of 3D topological Mott insulators that can be viewed as strong topological insulators of spinons interacting with a 3D gauge field. The low-energy behavior of such systems is dominated by gapless surface spinons (Dirac fermions) coupled to bulk gauge bosons. We find that a dimensional crossover from 3D to 2D in the gauge field fluctuations may occur as the system’s thickness and/or temperature is varied. In the thin sample limit, the gauge field fluctuations effectively become 2D and the problem becomes analogous to the standard 2D spinon-gauge field theory. In the 3D limit, the bulk gauge field fluctuations lead to a novel low-energy theory for the coupled system that is more controlled than in the 2D regime. We discuss various experimental signatures such as the heat capacity scaling as $T \ln(1/T)$ as well as modified RKKY interactions on the surface.

1Research was supported by NSERC, the Canada Research Chair program, and the Canadian Institute for Advanced Research.

2Currently at University of Leiden, Instituut-Lorentz for theoretical Physics