Nonequilibrium relaxation and aging scaling properties of the Coulomb glass\cite{1} MATTHEW T. SHIMER, UWE C. TÄUBER, MICHEL PLEIMLING, Department of Physics, Virginia Tech — Using Monte Carlo simulations, we analyze the two-time density autocorrelation function for the two- and three-dimensional Coulomb glass with various long-range interaction potentials. A full aging scaling ansatz is sufficient to describe the nonequilibrium relaxation properties of these highly correlated disordered systems. By investigating the trends of the scaling exponents, we find that they are non-universal, and depend on temperature, charge density, and interaction strength.


\cite{1}Research supported through the US Department of Energy (DOE-BES), grant no. DE-FG02-09ER46613.