Individual SWCNT based ionic field effect transistor

PEI PANG, Department of Physics, Biodesign Institute, Arizona State University, JIN HE, Biodesign Institute, Arizona State University, JAE HYUN PARK, PREDRAG KRSTIC, Physics Division, Oak Ridge National Laboratory, STUART LINDSAY, Department of Physics, Biodesign Institute, Department of Chemistry and Biochemistry, Arizona State University — Here we report that the ionic current through a single-walled carbon nanotube (SWCNT) can be effectively gated by a perpendicular electrical field from a top gate electrode, working as ionic field effect transistor. Both our experiment and simulation confirms that the electroosmotic current (EOF) is the main component in the ionic current through the SWCNT and is responsible for the gating effect. We also studied the gating efficiency as a function of solution concentration and pH and demonstrated that the device can work effectively in the physiological relevant condition. This work opens the door to use CNT based nanofluidics for ion and molecule manipulation.

1This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises and the Biodesign Institute.