Abstract Submitted for the MAR11 Meeting of The American Physical Society

Magnetic properties of Fe/Fe_3O_4 core/shell nanostructure VIVEK SINGH, MOHINDAR SEEHRA, West Virginia University, S. BALI, E. EYRING, University of Utah, N. SHAH, F. HUGGINS, G. HUFFMAN, University of Kentucky — Magnetic properties of a core/shell nanostructure with spherical core of Fe/FeB and a shell of Fe_3O_4/γ -Fe₂O₃ are reported employing magnetometry, electron magnetic resonance (EMR) and Mössbauer spectroscopy. This nanostructure was produced by reducing FeCl₃·6H₂O with NaBH₄. Combining the results from XRD, TEM and Mössbauer spectroscopy showed the nanostructure to consist of a core of diameter D \simeq 20 nm containing both α -Fe with D \simeq 7 nm and amorphous Fe-B alloy and a shell of thickness 5 nm containing Fe_3O_4/γ - Fe_2O_3 . Measurements of the magnetization M vs. temperature (2 K to 370 K) and in H up to 65 kOe show a blocking temperature $T_B \simeq 30$ K associated with the oxide shell and ferromagnetism up to 370 K with nearly temperature-independent saturation $M_S \simeq 70 \text{ emu/g}$ and coercivity $H_C \simeq 100$ Oe. In EMR studies at 9.28 GHz, two lines are observed: a narrower line with linewidth $\Delta H \simeq 600$ Oe and $g \simeq 2$ and a broader line with $\Delta H \simeq 4200$ Oe and $g\simeq 2.2$. These parameters of the narrower line combined with its disappearance below 50 K suggests its origin to be the oxide shell whereas the broader line is due to Fe/FeB core. Research supported by U. S. Dept. of Energy, Contract #DE-FC26-05NT42456.

> Vivek Singh West Virginia University

Date submitted: 10 Nov 2010

Electronic form version 1.4