MAR11-2010-000586

Abstract for an Invited Paper for the MAR11 Meeting of the American Physical Society

Observation of neutral modes via shot noise measurements

MOTY HEIBLUM, Weizmann Institute of Science

Current propagates in the quantum Hall regime along the edges of a two-dimensional-electron gas via chiral edge modes, with chirality dictated by the applied magnetic field. In the fractional regime, for some fractional states - the so called "holesconjugate" states – e.g., between filling factor 1/2 and 1 - early predictions suggested the presence of counter propagating edge modes: a "downstream" mode with the expected chirality and an "upstream" mode with an opposite chirality. Since experiments in the ubiquitous 2/3 state did not find upstream propagating edge modes, it had suggested that in the presence of interactions and disorder edge reconstruction may take place with a resultant downstream charge mode accompanied by upstream neutral mode - with the latter carrying only energy - thus explaining why the upstream modes were not detected thus far. Moreover, a neutral upstream Majorana mode is also expected for selected wavefunctions proposed for the even denominator state 5/2. I will review some of our observations of neutral modes in selected quantum Hall states. Neutral mode detection was performed by allowing a chiral mode to imping on a quantum point contact (QPC) constriction. The partitioning of the neutral mode led to current fluctuations propagating in the downstream chirality. The main following effects that were observed were: (a) Current noise, being proportional to the applied voltage on the injecting contact, without net current; (b) Similarly, partitioning charge current in a QPC led to generation of an upstream neutral mode; (c) The neutral mode decays fast with length and temperature; (d) Having a neutral mode impinge simultaneously with a charge mode affects strongly the Fano factor and the temperature of the partitioned charged quasiparticles; (e) For the 5/2 fractional state, our observation of an upstream neutral mode is likely to single out the proposed reconstructed Pfafian or anti-Pfafian wavefunctions for non-abelian quasiparticles.