The Electronic Specific Heat of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ from 2K to 380K

JAMES STOREY, JOHN LORAM, JOHN COOPER, University of Cambridge, ZBIGNIEW BUKOWSKI, JANUSZ KARPINSKI, ETH Zurich — Using a unique differential technique, we have measured the specific heat capacity of polycrystalline Ba$_{1-x}$K$_x$Fe$_2$As$_2$ with $x = 0, 0.1, 0.2, 0.3, 0.5, 0.9$ and 1.0, between 2K and 380K and in magnetic fields (H) from 0 – 13T. We determine the electronic specific heat coefficient $\gamma (\equiv C_{el}/T)$ over the entire range of T, H and x and compare it with the magnetic susceptibility of the seven samples. We show that our results are consistent with single crystal studies but give further interesting information. For $x < 0.3$, γ is progressively reduced at low T by a SDW gap, but is only weakly doping and T-dependent above the structural/magnetic transition. For $x = 0.3$ the normal state γ_n is constant up to 380K, but as x increases from 0.3 to 1.0, γ_n becomes increasingly T-dependent, increasing by a factor two at low-T and decreasing by a factor 1.5 at 380K for $x = 1$. We consider possible explanations for this striking T-dependence in terms of a sharp peak in the electronic density of states, a strongly x- and T-dependent effective mass enhancement, or low energy magnetic excitations. The H-dependent measurements allow us to extract the critical fields, superfluid density and coherence length as functions of doping and temperature.

1Supported by EPSRC (UK) and MaNEP (Switzerland).