On dipole anisotropy in spatial distribution of Plank’s constant values SIMON BERKOVICH, The George Washington University — The work relates to the remarkable fact discovered by John Webb et al. of angular variations of the fine structure constant $\alpha = e^2/\hbar c$. We elaborate on this fact using our model of quantum mechanics (see [1] and references within). The peculiarity of quantum behavior stems from interactive holography appearing on top of the cellular automaton mechanism of the Universe. Nonlocality comes naturally from sliced holographic processing. As to the anisotropy of α, its is due to variations of \hbar caused by different undulation control patterns in different positions with respect to the source of the holographic reference beam. The angular divergences in α are determined by the eccentric placement of the Solar system with respect to this reference holographic beam. This eccentricity factor imposes dipole structuring on several types of astrophysical observations. So, following [1], small opposite changes in \hbar with respect to the eccentricity displacement of the Solar system could be anticipated. Before we have shown that the same eccentricity factor leads to the appearance of the “axis-of-evil” in CMB. Further, the recently discovered anisotropy in high-energy cosmic rays should be also determined by the eccentricity factor, i.e. it should adhere to the same dipole. [1] S. Berkovich, ”A Comprehensive Explanation of Quantum Mechanics”, http://www.bestthinking.com/topics/science/physics/quantum_physics/a-comprehensive-explanation-of-quantum-mechanics