Size dependent superconductivity of Pb islands grown on Si (111)

JIEPENG LIU, XUEFENG WU, FANGFEI MING, XIEQIU ZHANG, KEDONG WANG, BING WANG, XUDONG XIAO, DEPARTMENT OF PHYSICS, THE CHINESE UNIVERSITY OF HONG KONG TEAM, HEFEI NATIONAL LABORATORY FOR PHYSICAL SCIENCES AT MICROSCALES, UNIV. OF SCIENCE AND TECHNOLOGY CHINA TEAM — The superconductivity of nano-sized Pb islands grown on Si (111) with different size at 9 monolayer thickness was studied by low temperature scanning tunneling spectroscopy. By measuring the zero bias conductance as a function of temperature, for larger islands we observed a transition from pseudogap state at high temperature to superconductivity state at low temperature through two distinct slopes, where the superconductivity transition temperature (T_c) of the island can be determined. For island size of $\sim 58 \text{ nm}^2$, a large drop in T_c is found; when the size is further reduced to about 30 nm2, no superconducting state was observed down to the measured temperature of 3.2 K. By properly subtracting the background and pseudogap effect, information on the temperature dependent superconductivity gap can be obtained. The ratio of $\frac{2\Delta}{k_B T_c}$ decreased from 4.5 to 3.3 with the reduction of island size, showing that the electron-phonon coupling becomes weaker as the size decreases.

Xudong Xiao

Department of Physics, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong, P. R. China

Date submitted: 15 Nov 2010