Abstract Submitted for the MAR11 Meeting of The American Physical Society

Non Fermi liquid properties of Ni-V close to the ferromagnetic quantum critical point¹ ALMUT SCHROEDER, SARA UBAID-KASSIS, BRENDAN WYATT, Kent State University, Kent OH, THOMAS VOJTA, Missouri University of Science and Technology, Rolla MO — Resistivity (ρ) and magnetization (M) data of the d-metal alloy Ni_{1-x}V_x are presented in the vicinity of the critical vanadium concentration $x_c \approx 11\%$ where the onset of long-range ferromagnetic (FM) order is suppressed to zero temperature. Above \mathbf{x}_c the temperature (T) dependence of the magnetic susceptibility is best described by simple nonuniversal power laws (e.g. $M/H(T, H \rightarrow 0) \sim T^{\alpha-1}$). Also the resistivity displays power laws ($\Delta \rho \sim T^n$). Both exponents $\alpha(\mathbf{x})$ and $\mathbf{n}(\mathbf{x})$ vary with \mathbf{x} displaying signatures of a disordered quantum phase transition in a metal very different than of a clean 3D FM.

¹Supported by NSF (DMR-0306766, DMR-0339147, DMR-0906566) OBR-440653 and Research Corporation.

Almut Schroeder Kent State University, Kent OH

Date submitted: 15 Nov 2010

Electronic form version 1.4