Quantum phase transitions in a polarized gas of dipolar molecules forming flexible chain1 BARBARA CAPOGROSSO-SANSONE, ITAMP, Harvard-Smithsonian center for Astrophysics, Cambridge, MA, 02138, ANATOLY KUKLOV, Department of Engineering Science and Physics, CSI, CUNY, Staten Island, NY 10314, USA — We numerically demonstrate the formation of quantum flexible chains in a gas of polar molecules confined into a stack of N 1d or 2d optical lattice layers, and with dipole moment aligned perpendicularly to the layers. Molecules interact via dipole-dipole interaction. Ab initio simulations of a single chain pinned at one end reveal quantum roughening transition. Multi-chain ensemble is studied in the J-current model approximation and chain superfluidity (CSF) is found. Increasing density of the chains leads to quantum phase transition from CSF to N-layered molecular superfluid (N-SF). We discuss the nature of this transition and its dependence on density, and the conditions for experimental realization and detection of the chain soup.

1We acknowledge support by NSF, grant PHY0653135, and by ITAMP.