Transport through a quantum dot with excitonic dot-lead coupling

FLORIAN ELSTE, DAVID R. REICHMAN, ANDREW J. MILLIS, Columbia University — We study the effect of a Coulombic dot-lead interaction on transport through a quantum dot hybridized to two Luttinger-liquid leads. A bosonization approach is applied to treat the interaction between charge fluctuations on the dot and the dynamically generated image charge in the leads. The nonequilibrium distribution function of the dot and the tunneling current are computed within a master-equation approach. Particular attention is paid to two situations: (i) a quantum dot placed between two leads such that it cuts the Luttinger liquid into two semi-infinite quantum wires; (ii) a quantum dot side-hybridized to two parallel infinite quantum wires. The presence of the excitonic dot-lead coupling is found to enhance transport in the vicinity of the Coulomb-blockade threshold. This behavior is in contrast to the usual power-law suppression of electronic tunneling which is found if this interaction is ignored.

AJM acknowledges support from NSF-DMR-0705847 and FE from the Deutsche Forschungsgemeinschaft.
