Orbital Gating of Single Molecule Transistors
MARK REED, Yale University

Electron devices containing molecules as the active region have been an active area of research over the last few years. In molecular-scale devices, a longstanding challenge has been to create a true three-terminal device; e.g., one that operates by modifying the internal energy structure of the molecule, analogous to conventional FETs. Here we report the observation of such a solid-state molecular device, in which transport current is directly modulated by an external gate voltage. We have realized a molecular transistor made from the prototype molecular junction, benzene dithiol, and have used a combination of spectroscopies to determine the internal energetic structure of the molecular junction. Resonance-enhanced coupling to the nearest molecular orbital is revealed by electron tunneling spectroscopy, demonstrating for the first time direct molecular orbital gating in a molecular electronic device.