The Speed Limit of Protein Folding: Alpha-Helix Initiation Modeled and Observed

MILO LIN, OMAR MOHAMMED, AHMED ZEWAIL

Physical Biology Center for Ultrafast Science and Technology, California Institute of Technology

As a primary event of protein folding, alpha-helix initiation is the starting point of macromolecular complexity. In this work, an analytic coarse-grained model which predicts the initiation rate as a function of temperature, is presented. Helix initiation was measured via ultrafast temperature-jump fluorescence refolding experiments on two penta-peptides, and the measured rates agreed well with those of the model. In addition, the temporal separation of rate-limiting diffusion from fast annealing stipulated by the model was confirmed via ensemble-converging all-atom molecular dynamics simulations, which reproduced both the diffusion and the picosecond annealing processes and rates observed experimentally. Some of these results were published in: Mohammed OF, Jas GS, Lin MM, Ma H, Zewail AH (2009) Primary peptide folding dynamics observed with ultrafast temperature jump. Angew Chem 48: 5628-5632.

We are grateful to the National Science Foundation and the National Institutes of Health for funding of this research at Caltech. M.M.L. acknowledges financial support from the Krell Institute and the US Department of Energy for a graduate fellowship.

Milo Lin

Physical Biology Center for Ultrafast Science and Technology,
California Institute of Technology