The complete interpretation of the fractions in quantum Hall effect

KESHAV SHRIVASTAVA, University of Malaya — We propose that the modified cyclotron energy is given by \((\hbar/2\pi)\omega_c(1/2)g(n+1/2)\) so that the fractional charge is given by the angular momentum with both signs of spin, \(j = l \pm s\). In addition to the (i) principal fractions given by \((1/2)g\) our theory with effective charge \(e^*=(1/2)ge\), has (ii) resonances at \(\nu_1 - \nu_2\) and (iii) two-particle states at \(\nu_1 + \nu_2\) and there are (iv) clusters with spin \(>1/2\), where \(\nu\) is a filling factor. This theory explains all of the 101 fractions and full graphene series. The fractional charges of graphene [2] are also explained. The series also explains the even denominators for \(S=0,1,2,\ldots\), as in electron clusters. The \(S=0, L=0\), corresponds to half filled Landau level. \(S=1/2, L=0\) with negative sign before \(s\) in \(j\) gives the zero-energy state. All of the predicted fractions agree with the data.