Emergent Dissipation in the $\nu = 1$ Quantum Hall Bilayer

GANPATHY MURTHY, University of Kentucky, HERBERT FERTIG, Indiana University

Disorder is known to be central to the $\nu = 1$ bilayer [1]. Building on our previous study of the bilayer $\nu = 1$ system in a periodic potential [2] to capture the nonperturbative effects of disorder, we construct a $T = 0$ effective theory, in which the XY angle is coupled to an emergent Ising spin. We uncover a $z = 2$ quantum phase transition with emergent dissipation. Calculations of the interlayer tunnelling conductance and counterflow conductivity will be presented.

1NSF DMR-0703992 and DMR-0704033.