Directed Self Assembly and Self-Limiting Growth (SLG) of Mound Formation on Patterned GaAs(001) Surface During MBE Homoepitaxy\(^1\) CHUAN-FU LIN, University of Maryland, HUNG-CHIH KAN, National Chung-Cheng University, Taiwan, SUBRAMANIAM KANAKARAJU, CHRIS RICHARDSON, Laboratory for Physical Sciences, RAY PHANEUF, University of Maryland — We present the results of molecular beam epitaxial growth experiments on nanopit-patterned GaAs(001) surfaces at temperatures near 500°C. We find that in the initial stage of growth, the pattern directs the spontaneous formation of multilayer islands at 2-fold bridge sites between neighboring nanopits along [110], seemingly due to the presence of an Ehrlich-Schwoebel barrier \(^1\). However, as growth continues, the height of mounds at 2-fold bridge “self-limits”: the mounds cease to grow. Beyond this point an initially less favored 4-fold bridge site for mounds dominates and a different pattern of self assembled mounds begins. We propose that a minimum, “critical terrace size” at the top of each mound is responsible for the observed self-limiting growth.


\(^1\)Work supported by NSF #DMR0705447 and the UM-MRSEC # DMR0520471.